Erratum to the Paper: A Uniform Boundedness Principle for Compact Sets and the Decay of Fourier Transforms.
Let G be a compact abelian group with dual group Γ and let ε > 0. A set E ⊂ Γ is a “weak ε-Kronecker set” if for every φ:E → there exists x in the dual of Γ such that |φ(γ)- γ(x)| ≤ ε for all γ ∈ E. When ε < √2, every bounded function on E is known to be the restriction of a Fourier-Stieltjes transform of a discrete measure. (Such sets are called I₀.) We show that for every infinite set E there exists a weak 1-Kronecker subset F, of the same cardinality as E, provided there are not “too many”...