On a family of weighted spaces
We construct examples of uncountable compact subsets of complex numbers with the property that any Borel measure on the circle group with Fourier coefficients taking values in this set has a natural spectrum. For measures with Fourier coefficients tending to 0 we construct an open set with this property. We also give an example of a singular measure whose spectrum is contained in our set.
Let be a locally compact abelian group and let 1 < p ≤ 2. ’ is the dual group of , and p’ the conjugate exponent of p. An operator T between Banach spaces X and Y is said to be compatible with the Fourier transform if admits a continuous extension . Let denote the collection of such T’s. We show that for any and positive integer n. Moreover, if the factor group of by its identity component is a direct sum of a torsion-free group and a finite group with discrete topology then .