A class of -sets
For some time it has been known that there exist continuous Helson curves in . This result, which is related to Lusin’s rearrangement problem, had been proved first by Kahane in 1968 with the aid of Baire category arguments. Later McGehee and Woodward extended this result, giving a concrete construction of a Helson -manifold in for . We present a construction of a Helson 2-manifold in . With modification, our method should even suffice to prove that there are Helson hypersurfaces in any .
Let m ≥ 2 be a positive integer. Given a set E(ω) ⊆ ℕ we define to be the number of ways to represent N ∈ ℤ as a combination of sums and differences of m distinct elements of E(ω). In this paper, we prove the existence of a “thick” set E(ω) and a positive constant K such that for all N ∈ ℤ. This is a generalization of a known theorem by Erdős and Rényi. We also apply our results to harmonic analysis, where we prove the existence of certain thin sets.
In [3] I showed that there are Helson sets on the circle 𝕋 which are not of synthesis, by constructing a Helson set which was not of uniqueness and so automatically not of synthesis. In [2] Kaufman gave a substantially simpler construction of such a set; his construction is now standard. It is natural to ask whether there exist Helson sets which are of uniqueness but not of synthesis; this has circulated as an open question. The answer is "yes" and was also given in [3, pp. 87-92] but seems to...
Answering a question of Pisier, posed in [10], we construct an L-set which is not a finite union of translates of free sets.