Fermés d'unicité dans les groupes abéliens localement compacts
In [2], D. E. Grow and M. Insall construct a countable compact set which is not the union of two H-sets. We make precise this result in two directions, proving such a set may be, but need not be, a finite union of H-sets. Descriptive set theory tools like Cantor-Bendixson ranks are used; they are developed in the book of A. S. Kechris and A. Louveau [6]. Two proofs are presented; the first one is elementary while the second one is more general and useful. Using the last one I prove in my thesis,...
This work deals with various questions concerning Fourier multipliers on , Schur multipliers on the Schatten class as well as their completely bounded versions when and are viewed as operator spaces. For this purpose we use subsets of ℤ enjoying the non-commutative Λ(p)-property which is a new analytic property much stronger than the classical Λ(p)-property. We start by studying the notion of non-commutative Λ(p)-sets in the general case of an arbitrary discrete group before turning to the...
Let be a subset of a discrete abelian group whose compact dual is . is exactly -Sidon (respectively, exactly non--Sidon) when holds if and only if (respectively, ). is said to be exactly (respectively, exactly non-) if has the property if and only if (respectively, ).In this paper, for every and , we display sets which are exactly -Sidon, exactly non--Sidon, exactly and exactly non-.