The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
2000 Mathematics Subject Classification: 42B20, 42B25, 42B35Let K = [0, ∞)×R be the Laguerre hypergroup which is the fundamental
manifold of the radial function space for the Heisenberg group. In this
paper we consider the generalized shift operator, generated by Laguerre
hypergroup, by means of which the maximal function is investigated. For
1 < p ≤ ∞ the Lp(K)-boundedness and weak L1(K)-boundedness result for
the maximal function is obtained.* V. Guliyev partially supported by grant of INTAS...
We study the Hausdorff-Young transform for a commutative hypergroup K and its dual space K̂ by extending the domain of the Fourier transform so as to encompass all functions in and respectively, where 1 ≤ p ≤ 2. Our main theorem is that those extended transforms are inverse to each other. In contrast to the group case, this is not obvious, since the dual space K̂ is in general not a hypergroup itself.
Currently displaying 1 –
4 of
4