On duals of Lie groups made discrete.
Let S be an abelian *-semigroup. In this paper we prove some equivalent conditions for that every positive function is a moment function on S + S + S with a unique representation measure on the set of characters of S.
In this paper we define derivatives of fractional order on spaces of homogeneous type by generalizing a classical formula for the fractional powers of the Laplacean [S1], [S2], [SZ] and introducing suitable quasidistances related to an approximation of the identity. We define integration of fractional order as in [GV] but using quasidistances related to the approximation of the identity mentioned before.We show that these operators act on Lipschitz spaces as in the classical cases. We prove that...
We prove that in Polish, abelian, non-locally-compact groups the family of Haar null sets of Christensen does not fulfil the countable chain condition, that is, there exists an uncountable family of pairwise disjoint universally measurable sets which are not Haar null. (Dougherty, answering an old question of Christensen, showed earlier that this was the case for some Polish, abelian, non-locally-compact groups.) Thus we obtain the following characterization of locally compact, abelian groups: Let...