The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We develop the basic theory of the Weyl symbolic calculus of pseudodifferential operators over the -adic numbers. We apply this theory to the study of elliptic operators over the -adic numbers and determine their asymptotic spectral behavior.
In this paper we prove microlocal version of the equidistribution theorem for Wigner distributions associated to Eisenstein series on . This generalizes a recent result of W. Luo and P. Sarnak who proves equidistribution for . The averaged versions of these results have been proven by Zelditch for an arbitrary finite-volume surface, but our proof depends essentially on the presence of Hecke operators and works only for congruence subgroups of . In the proof the key estimates come from applying...
It is proved that every real metrizable locally convex space which is not nuclear contains a closed additive subgroup K such that the quotient group G = (span K)/K admits a non-trivial continuous positive definite function, but no non-trivial continuous character. Consequently, G cannot satisfy any form of the Bochner theorem.
On considère l’espace où et sont deux fonctions définies-négatives, réelles et continues sur . On étudie la possibilité d’approcher, au sens de la norme de , tout élément de par des combinaisons linéaires d’éléments de qui sont transformés de Fourier de mesures positives de support inclus dans le spectre de . Des méthodes de théorie du potentiel permettent de donner une réponse positive (sous certaines hypothèses additionnelles). On obtient ainsi des généralisations, au cas de ,...
Currently displaying 1 –
11 of
11