Displaying 1661 – 1680 of 2289

Showing per page

Sets of p-multiplicity in locally compact groups

I. G. Todorov, L. Turowska (2015)

Studia Mathematica

We initiate the study of sets of p-multiplicity in locally compact groups and their operator versions. We show that a closed subset E of a second countable locally compact group G is a set of p-multiplicity if and only if E * = ( s , t ) : t s - 1 E is a set of operator p-multiplicity. We exhibit examples of sets of p-multiplicity, establish preservation properties for unions and direct products, and prove a p-version of the Stone-von Neumann Theorem.

Sharp maximal functions associated with approximations of the identity in spaces of homogeneous type and applications

José María Martell (2004)

Studia Mathematica

In the context of the spaces of homogeneous type, given a family of operators that look like approximations of the identity, new sharp maximal functions are considered. We prove a good-λ inequality for Muckenhoupt weights, which leads to an analog of the Fefferman-Stein estimate for the classical sharp maximal function. As a consequence, we establish weighted norm estimates for certain singular integrals, defined on irregular domains, with Hörmander conditions replaced by some estimates which do...

Shift-modulation invariant spaces on LCA groups

Carlos Cabrelli, Victoria Paternostro (2012)

Studia Mathematica

A (K,Λ) shift-modulation invariant space is a subspace of L²(G) that is invariant under translations along elements in K and modulations by elements in Λ. Here G is a locally compact abelian group, and K and Λ are closed subgroups of G and the dual group Ĝ, respectively. We provide a characterization of shift-modulation invariant spaces when K and Λ are uniform lattices. This extends previous results known for L ² ( d ) . We develop fiberization techniques and suitable range functions adapted to LCA groups...

Currently displaying 1661 – 1680 of 2289