Convolution of Hankel transform and its application to an integral involving Bessel functions of first kind.
Let , 1 ≤ i ≤ n, and for t > 0 and x = (x₁,...,xₙ) ∈ ℝⁿ, let , and . Let φ₁,...,φₙ be real functions in such that φ = (φ₁,..., φₙ) satisfies φ(t • x) = t ∘ φ(x). Let γ > 0 and let μ be the Borel measure on given by , where and dx denotes the Lebesgue measure on ℝⁿ. Let and let be the operator norm of from into , where the spaces are taken with respect to the Lebesgue measure. The type set is defined by . In the case for 1 ≤ i,k ≤ n we characterize the type set under...
Mathematics Subject Classification: 43A20, 26A33 (main), 44A10, 44A15We prove equalities in the Banach algebra L1(R+). We apply them to integral transforms and fractional calculus.* Partially supported by Project BFM2001-1793 of the MCYT-DGI and FEDER and Project E-12/25 of D.G.A.
Nous introduisons pour les systèmes linéaires constants les reconstructeurs intégraux et les correcteurs proportionnels-intégraux généralisés, qui permettent d’éviter le terme dérivé du PID classique et, plus généralement, les observateurs asymptotiques usuels. Notre approche, de nature essentiellement algébrique, fait appel à la théorie des modules et au calcul opérationnel de Mikusiński. Plusieurs exemples sont examinés.
For constant linear systems we are introducing integral reconstructors and generalized proportional-integral controllers, which permit to bypass the derivative term in the classic PID controllers and more generally the usual asymptotic observers. Our approach, which is mainly of algebraic flavour, is based on the module-theoretic framework for linear systems and on operational calculus in Mikusiński's setting. Several examples are discussed.