On the Quasiasymptotic Behaviour of the Stieltjes Transformation of Distributions
Stevan Pilipović (1986)
Publications de l'Institut Mathématique
Alexander Hertle (1984)
Mathematische Annalen
Antonio G. García, Miguel A. Hernández Medina (2000)
Extracta Mathematicae
Christian Berg (1975)
Mathematica Scandinavica
L.C. Petersen (1982)
Mathematica Scandinavica
B. Stanković (1971)
Matematički Vesnik
Tatjana Olegovna Shaposhnikova (1985)
Časopis pro pěstování matematiky
Torben Maack Bisgaard (2002)
Czechoslovak Mathematical Journal
We characterize finitely generated abelian semigroups such that every completely positive definite function (a function all of whose shifts are positive definite) is an integral of nonnegative miltiplicative real-valued functions (called nonnegative characters).
Grzegorz Łysik (1990)
Annales Polonici Mathematici
O. Hadžić (1971)
Matematički Vesnik
Nets Hawk Katz, Cristina Pereyra (1997)
Revista Matemática Iberoamericana
In this paper, we prove sufficient conditions on pairs of weights (u,v) (scalar, matrix or operator valued) so that the Hilbert transform H f(x) = p.v. ∫ [f(y) / x - y] dy,is bounded from L2(u) to L2(v).
Zagorodnyuk, S. (2010)
Annals of Functional Analysis (AFA) [electronic only]
J. P. Singhal, C. M. Joshi (1982)
Revista Matemática Hispanoamericana
Abdelkefi, Chokri, Sifi, Mohamed (2006)
Fractional Calculus and Applied Analysis
2000 Mathematics Subject Classification: 44A15, 44A35, 46E30In this paper we prove that the partial Dunkl integral ST(f) of f converges to f, as T → +∞ in L^∞(νµ) and we show that the Dunkl transform Fµ(f) of f is in L^1(νµ) when f belongs to a suitable Besov-Dunkl space. We also give sufficient conditions on a function f in order that the Dunkl transform Fµ(f) of f is in a L^p -space.* Supported by 04/UR/15-02.
Adam Bobrowski (1997)
Studia Mathematica
The Yosida approximation is treated as an inversion formula for the Laplace transform.
Sinha, Sunil Kumar (1985)
International Journal of Mathematics and Mathematical Sciences
Józef Burzyk (1983)
Studia Mathematica
W. Jurkat, G. Sampson (1982)
Studia Mathematica
Ournycheva, E., Rubin, B. (2010)
Fractional Calculus and Applied Analysis
Mathematics Subject Classification 2010: 42C40, 44A12.In 1986 Y. Nievergelt suggested a simple formula which allows to reconstruct a continuous compactly supported function on the 2-plane from its Radon transform. This formula falls into the scope of the classical convolution-backprojection method. We show that elementary tools of fractional calculus can be used to obtain more general inversion formulas for the k-plane Radon transform of continuous and L^p functions on R^n for all 1 ≤ k < n....
Alain Bachelot (1982)
Journées équations aux dérivées partielles