The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 101 –
120 of
145
A closed loop parametrical identification procedure for continuous-time constant linear systems is introduced. This approach which exhibits good robustness properties with respect to a large variety of additive perturbations is based on the following mathematical tools: (1) module theory; (2) differential algebra; (3) operational calculus. Several concrete case-studies with computer simulations demonstrate the efficiency of our on-line identification scheme.
A closed loop parametrical identification procedure for
continuous-time constant linear systems is introduced. This
approach which exhibits good robustness properties with respect to
a large variety of additive perturbations is based on the
following mathematical tools:
(1) module theory;
(2) differential algebra;
(3) operational calculus.
Several concrete case-studies with computer simulations
demonstrate the efficiency of our on-line identification scheme.
Mathematics Subject Classification: Primary 35R10, Secondary 44A15We establish an analogue of Beurling-Hörmander’s theorem for the Dunkl-Bessel transform FD,B on R(d+1,+). We deduce an analogue of Gelfand-Shilov, Hardy, Cowling-Price and Morgan theorems on R(d+1,+) by using the heat kernel associated to the Dunkl-Bessel-Laplace operator.
Let be a random walk drifting to -∞. We obtain an asymptotic expansion for the distribution of the supremum of which takes into account the influence of the roots of the equation being the underlying distribution. An estimate, of considerable generality, is given for the remainder term by means of submultiplicative weight functions. A similar problem for the stationary distribution of an oscillating random walk is also considered. The proofs rely on two general theorems for Laplace transforms....
The first explicit example of a positive semidefinite double sequence which is not a moment sequence was given by Friedrich. We present an example with a simpler definition and more moderate growth as .
We construct a new Boehmian space containing the space 𝓢̃'(ℝⁿ×ℝ₊) and define the extended wavelet transform 𝓦 of a new Boehmian as a tempered Boehmian. In analogy to the distributional wavelet transform, it is proved that the extended wavelet transform is linear, one-to-one, and continuous with respect to δ-convergence as well as Δ-convergence.
We survey recent developments in operator theory and moment problems, beginning with the study of quadratic hyponormality for unilateral weighted shifts, its connections with truncated Hamburger, Stieltjes, Hausdorff and Toeplitz moment problems, and the subsequent proof that polynomially hyponormal operators need not be subnormal. We present a general elementary approach to truncated moment problems in one or several real or complex variables, based on matrix positivity and extension. Together...
Currently displaying 101 –
120 of
145