Displaying 61 – 80 of 324

Showing per page

Complete interpolating sequences for Paley-Wiener spaces and Muckenhoupt's (Ap) condition.

Yurii I. Lyubarskii, Kristian Seip (1997)

Revista Matemática Iberoamericana

We describe the complete interpolating sequences for the Paley-Wiener spaces Lπp (1 < p < ∞) in terms of Muckenhoupt's (Ap) condition. For p = 2, this description coincides with those given by Pavlov [9], Nikol'skii [8] and Minkin [7] of the unconditional bases of complex exponentials in L2(-π,π). While the techniques of these authors are linked to the Hilbert space geometry of Lπ2, our method of proof is based in turning the problem into one about boundedness of the Hilbert transform...

Convolution Products in L1(R+), Integral Transforms and Fractional Calculus

Miana, Pedro (2005)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 43A20, 26A33 (main), 44A10, 44A15We prove equalities in the Banach algebra L1(R+). We apply them to integral transforms and fractional calculus.* Partially supported by Project BFM2001-1793 of the MCYT-DGI and FEDER and Project E-12/25 of D.G.A.

Currently displaying 61 – 80 of 324