Displaying 381 – 400 of 423

Showing per page

Uniqueness of solutions to an Abel type nonlinear integral equation on the half line

Wojciech Mydlarczyk (2012)

Open Mathematics

We consider a convolution-type integral equation u = k ⋆ g(u) on the half line (−∞; a), a ∈ ℝ, with kernel k(x) = x α−1, 0 < α, and function g(u), continuous and nondecreasing, such that g(0) = 0 and 0 < g(u) for 0 < u. We concentrate on the uniqueness problem for this equation, and we prove that if α ∈ (1, 4), then for any two nontrivial solutions u 1, u 2 there exists a constant c ∈ ℝ such that u 2(x) = u 1(x +c), −∞ < x. The results are obtained by applying Hilbert projective metrics....

Vector integral equations with discontinuous right-hand side

Filippo Cammaroto, Paolo Cubiotti (1999)

Commentationes Mathematicae Universitatis Carolinae

We deal with the integral equation u ( t ) = f ( I g ( t , z ) u ( z ) d z ) , with t I = [ 0 , 1 ] , f : 𝐑 n 𝐑 n and g : I × I [ 0 , + [ . We prove an existence theorem for solutions u L ( I , 𝐑 n ) where the function f is not assumed to be continuous, extending a result previously obtained for the case n = 1 .

Weak and strong topologies and integral equations in Banach spaces

Donal O'Regan (1995)

Annales Polonici Mathematici

The Schauder-Tikhonov theorem in locally convex topological spaces and an extension of Krasnosel’skiĭ’s fixed point theorem due to Nashed and Wong are used to establish existence of L α and C solutions to Volterra and Hammerstein integral equations in Banach spaces.

Currently displaying 381 – 400 of 423