Linear abstract integro-differential equations of hyperbolic type in Hilbert spaces
Fundamental results concerning Stieltjes integrals for functions with values in Banach spaces have been presented in [5]. The background of the theory is the Kurzweil approach to integration, based on Riemann type integral sums (see e.g. [3]). It is known that the Kurzweil theory leads to the (non-absolutely convergent) Perron-Stieltjes integral in the finite dimensional case. Here basic results concerning equations of the form x(t) = x(a) +at [A(s)]x(s) +f(t) - f(a) are presented on the basis of...
This paper is a continuation of [9]. In [9] results concerning equations of the form x(t) = x(a) +at [A(s)]x(s) +f(t) - f(a) were presented. The Kurzweil type Stieltjes integration in the setting of [6] for Banach space valued functions was used. Here we consider operator valued solutions of the homogeneous problem (t) = I +dt [A(s)](s) as well as the variation-of-constants formula for the former equation.
The existence and attractivity of a local center manifold for fully nonlinear parabolic equation with infinite delay is proved with help of a solutions semigroup constructed on the space of initial conditions. The result is applied to the stability problem for a parabolic integrodifferential equation.