On a Class of Retarded Partial Differential Equations.
We consider a class of Volterra-type integral equations in a Hilbert space. The operators of the equation considered appear as time-dependent functions with values in the space of linear continuous operators mapping the Hilbert space into its dual. We are looking for maximal values of cost functionals with respect to the admissible set of operators. The existence of a solution in the continuous and the discretized form is verified. The convergence analysis is performed. The results are applied to...
We study positive linear Volterra integro-differential equations in Banach lattices. A characterization of positive equations is given. Furthermore, an explicit spectral criterion for uniformly asymptotic stability of positive equations is presented. Finally, we deal with problems of robust stability of positive systems under structured perturbations. Some explicit stability bounds with respect to these perturbations are given.
For the integral equation (1) below we prove the existence on an interval of a solution with values in a Banach space , belonging to the class , . Further, the set of solutions is shown to be a compact one in the sense of Aronszajn.
We consider an elliptic pseudodifferential equation in a multi-dimensional cone, and using the wave factorization concept for an elliptic symbol we describe a general solution of such equation in Sobolev-Slobodetskii spaces. This general solution depends on some arbitrary functions, their quantity being determined by an index of the wave factorization. For identifying these arbitrary functions one needs some additional conditions, for example, boundary conditions. Simple boundary value problems,...