Displaying 201 – 220 of 233

Showing per page

Gradient potential estimates

Giuseppe Mingione (2011)

Journal of the European Mathematical Society

Pointwise gradient bounds via Riesz potentials like those available for the Poisson equation actually hold for general quasilinear equations.

Graphs having no quantum symmetry

Teodor Banica, Julien Bichon, Gaëtan Chenevier (2007)

Annales de l’institut Fourier

We consider circulant graphs having p vertices, with p prime. To any such graph we associate a certain number k , that we call type of the graph. We prove that for p k the graph has no quantum symmetry, in the sense that the quantum automorphism group reduces to the classical automorphism group.

Greedy approximation and the multivariate Haar system

A. Kamont, V. N. Temlyakov (2004)

Studia Mathematica

We study nonlinear m-term approximation in a Banach space with regard to a basis. It is known that in the case of a greedy basis (like the Haar basis in L p ( [ 0 , 1 ] ) , 1 < p < ∞) a greedy type algorithm realizes nearly best m-term approximation for any individual function. In this paper we generalize this result in two directions. First, instead of a greedy algorithm we consider a weak greedy algorithm. Second, we study in detail unconditional nongreedy bases (like the multivariate Haar basis d = × . . . × in L p ( [ 0 , 1 ] d ) ,...

Greedy Approximation with Regard to Bases and General Minimal Systems

Konyagin, S., Temlyakov, V. (2002)

Serdica Mathematical Journal

*This research was supported by the National Science Foundation Grant DMS 0200187 and by ONR Grant N00014-96-1-1003This paper is a survey which also contains some new results on the nonlinear approximation with regard to a basis or, more generally, with regard to a minimal system. Approximation takes place in a Banach or in a quasi-Banach space. The last decade was very successful in studying nonlinear approximation. This was motivated by numerous applications. Nonlinear approximation is important...

Group C*-algebras satisfying Kadison's conjecture

Rachid El Harti, Paulo R. Pinto (2011)

Banach Center Publications

We tackle R. V. Kadison’s similarity problem (i.e. any bounded representation of any unital C*-algebra is similar to a *-representation), paying attention to the class of C*-unitarisable groups (those groups G for which the full group C*-algebra C*(G) satisfies Kadison’s problem) and thereby we establish some stability results for Kadison’s problem. Namely, we prove that A m i n B inherits the similarity problem from those of the C*-algebras A and B, provided B is also nuclear. Then we prove that G/Γ is...

Currently displaying 201 – 220 of 233