Displaying 721 – 740 of 1582

Showing per page

A remark on complex powers of analytic functions

Giuseppe Zampieri (1985)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Sia K n un compatto, f 0 una funzione analitica all'intorno di K , ed m la massima molteplicità in K degli zeri di f ; si prova che la potenza f λ ( λ , R e λ > 1 m ) è integrabile in K . L'estensione meromorfa dell'applicazione λ f λ da R e λ > 0 a tutto (con valori in 𝒟 ( K ) anziché in L 1 ( K ) ) era già stata provata in [1] e [2].

A remark on extrapolation of rearrangement operators on dyadic H s , 0 < s ≤ 1

Stefan Geiss, Paul F. X. Müller, Veronika Pillwein (2005)

Studia Mathematica

For an injective map τ acting on the dyadic subintervals of the unit interval [0,1) we define the rearrangement operator T s , 0 < s < 2, to be the linear extension of the map ( h I ) / ( | I | 1 / s ) ( h τ ( I ) ) ( | τ ( I ) | 1 / s ) , where h I denotes the L -normalized Haar function supported on the dyadic interval I. We prove the following extrapolation result: If there exists at least one 0 < s₀ < 2 such that T s is bounded on H s , then for all 0 < s < 2 the operator T s is bounded on H s .

Currently displaying 721 – 740 of 1582