A characterization of the domain of attraction of a normal distribution in a Hilbert space
Let G be a locally compact abelian group and M(G) its measure algebra. Two measures μ and λ are said to be equivalent if there exists an invertible measure ϖ such that ϖ*μ = λ. The main result of this note is the following: A measure μ is invertible iff |μ̂| ≥ ε on Ĝ for some ε > 0 and μ is equivalent to a measure λ of the form λ = a + θ, where a ∈ L¹(G) and θ ∈ M(G) is an idempotent measure.
We give a complete characterization of tribes with respect to the Łukasiewicz -norm, i. e., of systems of fuzzy sets which are closed with respect to the complement of fuzzy sets and with respect to countably many applications of the Łukasiewicz -norm. We also characterize all operations with respect to which all such tribes are closed. This generalizes the characterizations obtained so far for other fundamental -norms, e. g., for the product -norm.
2000 Mathematics Subject Classification: 46B26, 46B03, 46B04.We prove that a Banach space X is weakly Lindelöf determined if (and only if) each non-separable Banach space isomorphic to a complemented subspace of X has a projectional resolution of the identity. This answers a question posed by S. Mercourakis and S. Negrepontis and yields a converse of Amir-Lindenstrauss’ theorem. We also prove that a Banach space of the form C(K) where K is a continuous image of a Valdivia compactum is weakly Lindelöf...
The equivalence of the two following properties is proved for every Banach lattice :1) is weakly sequentially complete.2) Every -Borel measurable linear functional on is -continuous.
We characterize when weighted -spaces of holomorphic functions have the dual density condition, when the weights are radial and grow logarithmically.
Given a domain of class , , we construct a chart that maps normals to the boundary of the half space to normals to the boundary of in the sense that and that still is of class . As an application we prove the existence of a continuous extension operator for all normal derivatives of order 0 to on domains of class . The construction of this operator is performed in weighted function spaces where the weight function is taken from the class of Muckenhoupt weights.
We construct a totally disconnected compact Hausdorff space K₊ which has clopen subsets K₊” ⊆ K₊’ ⊆ K₊ such that K₊” is homeomorphic to K₊ and hence C(K₊”) is isometric as a Banach space to C(K₊) but C(K₊’) is not isomorphic to C(K₊). This gives two nonisomorphic Banach spaces (necessarily nonseparable) of the form C(K) which are isomorphic to complemented subspaces of each other (even in the above strong isometric sense), providing a solution to the Schroeder-Bernstein problem for Banach spaces...