Counterexample to a Conjecture of Grothendieck.
A pair (X, α) is a partial dynamical system if X is a compact topological space and α: Δ→ X is a continuous mapping such that Δ is open. Additionally we assume here that Δ is closed and α(Δ) is open. Such systems arise naturally while dealing with commutative C *-dynamical systems. In this paper we construct and investigate a universal C *-algebra C *(X,α) which agrees with the partial crossed product [10] in the case α is injective, and with the crossed product by a monomorphism [22] in the case...
In this paper, we prove a covariant version of the Stinespring theorem for Hilbert C*-modules. Also, we show that there is a bijective correspondence between operator valued completely positive maps, (u′, u)-covariant with respect to the dynamical system (G, η, X) on Hilbert C*-modules and (u′, u)-covariant operator valued completely positive maps on the crossed product G ×η X of X by η.
In this paper, some necessary and sufficient conditions for in Musielak-Orlicz function spaces as well as in Musielak-Orlicz sequence spaces are given.
Criteria are given for determining the weak compactness, or otherwise, of the integration map associated with a vector measure. For instance, the space of integrable functions of a weakly compact integration map is necessarily normable for the mean convergence topology. Results are presented which relate weak compactness of the integration map with the property of being a bicontinuous isomorphism onto its range. Finally, a detailed description is given of the compactness properties for the integration...
We are concerned with imbeddings of general spaces of Besov and Lizorkin-Triebel type with dominating mixed derivatives in the first critical case. We employ multivariate exponential Orlicz and Lorentz-Orlicz spaces as targets. We study basic properties of the target spaces, in particular, we compare them with usual exponential spaces, showing that in this case the multivariate clones are in fact better adapted to the character of smoothness of the imbedded spaces. Then we prove sharp limiting imbedding...
We define the crossed product of a pro-C*-algebra A by a Hilbert A-A pro-C*-bimodule and we show that it can be realized as an inverse limit of crossed products of C*-algebras by Hilbert C*-bimodules. We also prove that under some conditions the crossed products of two Hilbert pro-C*-bimodules over strongly Morita equivalent pro-C*-algebras are strongly Morita equivalent.