Crossed products whose primitive ideal spaces are generalized trivial ...-bundles.
A necessary and sufficient condition is given for a*-algebra with identity to have a unique maximal C*-seminorm. This generalizes the result, due to Bonsall, that a Banach *-algebra with identity has such a*-seminorm.
The main facts about unbounded C*-seminorms on partial *-algebras are reviewed and the link with the representation theory is discussed. In particular, starting from the more familiar case of *-algebras, we examine C*-seminorms that are defined from suitable families of positive linear or sesquilinear forms, mimicking the construction of the Gelfand seminorm for Banach *-algebras. The admissibility of these forms in terms of the (unbounded) C*-seminorms they generate is characterized.
In this paper we study the notions of finite turn of a curve and finite turn of tangents of a curve. We generalize the theory (previously developed by Alexandrov, Pogorelov, and Reshetnyak) of angular turn in Euclidean spaces to curves with values in arbitrary Banach spaces. In particular, we manage to prove the equality of angular turn and angular turn of tangents in Hilbert spaces. One of the implications was only proved in the finite dimensional context previously, and equivalence of finiteness...
We give explicit formulae for the continuous Hochschild and cyclic homology and cohomology of certain -algebras. We use well-developed homological techniques together with some niceties of the theory of locally convex spaces to generalize the results known in the case of Banach algebras and their inverse limits to wider classes of topological algebras. To this end we show that, for a continuous morphism ϕ: x → y of complexes of complete nuclear DF-spaces, the isomorphism of cohomology groups H...
In this article, we present two possible extensions of the classical theory of equivariant cohomology. The first, due to P. Baum, R. MacPherson and the author, is called the “delocalized theory". We attempt to present it in very concrete form for a circle action on a smooth manifold. The second is the cyclic homology of the crossed- product algebra of the algebra of smooth functions on a manifold, by the convolution algebra of smooth functions on a Lie group, when such Lie group act on the manifold....