Displaying 1681 – 1700 of 13226

Showing per page

Banach-Mackey spaces.

Qiu, Jing Hui, McKennon, Kelly (1991)

International Journal of Mathematics and Mathematical Sciences

Banach’s Continuous Inverse Theorem and Closed Graph Theorem

Hideki Sakurai, Hiroyuki Okazaki, Yasunari Shidama (2012)

Formalized Mathematics

In this article we formalize one of the most important theorems of linear operator theory - the Closed Graph Theorem commonly used in a standard text book such as [10] in Chapter 24.3. It states that a surjective closed linear operator between Banach spaces is bounded.

Banach's school and topological algebras

Wiesław Żelazko (2009)

Banach Center Publications

We present here some evidence of the activity of Banach Lwów School of functional analysis in the field of topological algebras. We shall list several results connected with such names as Stanisław Mazur (1905-1981), Maks (Meier) Eidelheit (1910-1943), Stefan Banach (1892-1945) and Andrzej Turowicz (1904-1989) showing that if the war had not interrupted this activity we could expect more interesting results in this direction.

Banach-Saks properties in symmetric spaces of measurable operators

P. G. Dodds, T. K. Dodds, F. A. Sukochev (2007)

Studia Mathematica

We study Banach-Saks properties in symmetric spaces of measurable operators. A principal result shows that if the symmetric Banach function space E on the positive semiaxis with the Fatou property has the Banach-Saks property then so also does the non-commutative space E(ℳ,τ) of τ-measurable operators affiliated with a given semifinite von Neumann algebra (ℳ,τ).

Banach-Saks property in some Banach sequence spaces

Yunan Cui, Henryk Hudzik, Ryszard Płuciennik (1997)

Annales Polonici Mathematici

It is proved that for any Banach space X property (β) defined by Rolewicz in [22] implies that both X and X* have the Banach-Saks property. Moreover, in Musielak-Orlicz sequence spaces, criteria for the Banach-Saks property, the near uniform convexity, the uniform Kadec-Klee property and property (H) are given.

Banach-valued axiomatic spectra

S. Seán, Robin E. Harte (2006)

Studia Mathematica

Using axiomatic joint spectra we obtain a functional calculus which extends our previous Gelfand-Waelbroeck type results to include a Banach-valued Taylor-Waelbroeck spectrum.

Currently displaying 1681 – 1700 of 13226