Displaying 1901 – 1920 of 13226

Showing per page

Boundedness and compactness of some operators on discrete Morrey spaces

Martha Guzmán-Partida (2021)

Commentationes Mathematicae Universitatis Carolinae

We consider discrete versions of Morrey spaces introduced by Gunawan et al. in papers published in 2018 and 2019. We prove continuity and compactness of multiplication operators and commutators acting on them.

Boundedness and compactness of the embedding between spaces with multiweighted derivatives when 1 q < p <

Zamira Abdikalikova, Ryskul Oinarov, Lars-Erik Persson (2011)

Czechoslovak Mathematical Journal

We consider a new Sobolev type function space called the space with multiweighted derivatives W p , α ¯ n , where α ¯ = ( α 0 , α 1 , ... , α n ) , α i , i = 0 , 1 , ... , n , and f W p , α ¯ n = D α ¯ n f p + i = 0 n - 1 | D α ¯ i f ( 1 ) | , D α ¯ 0 f ( t ) = t α 0 f ( t ) , D α ¯ i f ( t ) = t α i d d t D α ¯ i - 1 f ( t ) , i = 1 , 2 , ... , n . We establish necessary and sufficient conditions for the boundedness and compactness of the embedding W p , α ¯ n W q , β ¯ m , when 1 q < p < , 0 m < n .

Boundedness for a bilinear model sum operator on ℝⁿ

Erin Terwilleger (2007)

Studia Mathematica

The purpose of this article is to obtain a multidimensional extension of Lacey and Thiele's result on the boundedness of a model sum which plays a crucial role in the boundedness of the bilinear Hilbert transform in one dimension. This proof is a simplification of the original proof of Lacey and Thiele modeled after the presentation of Bilyk and Grafakos.

Boundedness of convolution operators with smooth kernels on Orlicz spaces

Hugo Aimar, Eleonor Harboure, Bibiana Iaffei (2002)

Studia Mathematica

We study boundedness in Orlicz norms of convolution operators with integrable kernels satisfying a generalized Lipschitz condition with respect to normal quasi-distances of ℝⁿ and continuity moduli given by growth functions.

Currently displaying 1901 – 1920 of 13226