The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let U, V be two symmetric convex bodies in and |U|, |V| their n-dimensional volumes. It is proved that there exist vectors such that, for each choice of signs , one has where . Hence it is deduced that if a metrizable locally convex space is not nuclear, then it contains a null sequence such that the series is divergent for any choice of signs and any permutation π of indices.
Let F be a complemented subspace of a nuclear Fréchet space E. If E and F both have (absolute) bases resp. , then Bessaga conjectured (see [2] and for a more general form, also [8]) that there exists an isomorphism of F into E mapping to where is a scalar sequence, π is a permutation of ℕ and is a subsequence of ℕ. We prove that the conjecture holds if E is unstable, i.e. for some base of decreasing zero-neighborhoods consisting of absolutely convex sets one has ∃s ∀p ∃q ∀r where...
Currently displaying 1 –
8 of
8