A Characterization of Schwartz Spaces.
Using factorization properties of an operator ideal over a Banach space, it is shown how to embed a locally convex space from the corresponding Grothendieck space ideal into a suitable power of , thus achieving a unified treatment of several embedding theorems involving certain classes of locally convex spaces.
When treating spaces of holomorphic functions with growth conditions, one is led to introduce associated weights. In our main theorem we characterize, in terms of the sequence of associated weights, several properties of weighted (LB)-spaces of holomorphic functions on an open subset which play an important role in the projective description problem. A number of relevant examples are provided, and a “new projective description problem” is posed. The proof of our main result can also serve to characterize...
Estudiamos algunas cuestiones estructurales acerca del espacio localmente convexo HV∞, que está formado por funciones analíticas en el disco unidad abierto. Construimos una descomposición atómica de este espacio, usando un retículo de puntos del disco unidad que es más denso que el usual. También demostramos que HV∞ no es nuclear.