Strictly webbed spaces and regularity properties of inductive limits.
We investigate the problem when the strong dual of a projective limit of (LB)-spaces coincides with the inductive limit of the strong duals. It is well-known that the answer is affirmative for spectra of Banach spaces if the projective limit is a quasinormable Fréchet space. In that case, the spectrum satisfies a certain condition which is called “strong P-type”. We provide an example which shows that strong P-type in general does not imply that the strong dual of the projective limit is the inductive...
We review recent developments in the theory of inductive limits and use them to give a new and rather easy proof for Hörmander?s characterization of surjective convolution operators on spaces of Schwartz distributions.
In this paper the tensor products of Hilbert modules over locally -algebras are defined and their properties are studied. Thus we show that most of the basic properties of the tensor products of Hilbert -modules are also valid in the context of Hilbert modules over locally -algebras.
Let H(Q) be the space of all the functions which are holomorphic on an open neighbourhood of a convex locally closed subset Q of CN, endowed with its natural projective topology. We characterize when the topology of the weighted inductive limit of Fréchet spaces which is obtained as the Laplace transform of the dual H(Q)' of H(Q) can be described by weighted sup-seminorms. The behaviour of the corresponding inductive limit of spaces of continuous functions is also investigated.
We study Palamodov's derived projective limit functor Proj¹ for projective spectra consisting of webbed locally convex spaces introduced by Wilde. This class contains almost all locally convex spaces appearing in analysis. We provide a natural characterization for the vanishing of Proj¹ which generalizes and unifies results of Palamodov and Retakh for spectra of Fréchet and (LB)-spaces. We thus obtain a general tool for solving surjectivity problems in analysis.