Complemented subspaces of sums and products of copies of L1[0, 1].
We prove that the direct sum and the product of countably many copies of L1[0, 1] are primary locally convex spaces. We also give some related results.
We prove that the direct sum and the product of countably many copies of L1[0, 1] are primary locally convex spaces. We also give some related results.
It is well known that one can often construct a star-product by expanding the product of two Toeplitz operators asymptotically into a series of other Toeplitz operators multiplied by increasing powers of the Planck constant h. This is the Berezin-Toeplitz quantization. We show that one can obtain in a similar way in fact any star-product which is equivalent to the Berezin-Toeplitz star-product, by using instead of Toeplitz operators other suitable mappings from compactly supported smooth functions...
Stemming from the study of signals via wavelet coefficients, the spaces are complete metrizable and separable topological vector spaces, parametrized by a function ν, whose elements are sequences indexed by a binary tree. Several papers were devoted to their basic topology; recently it was also shown that depending on ν, may be locally convex, locally p-convex for some p > 0, or not at all, but under a minor condition these spaces are always pseudoconvex. We deal with some more sophisticated...