ELB holomorphic factorization over projective limit representations
The problem of the existence of extension maps from 0 to ℝ in the setting of the classical ultradifferentiable function spaces has been solved by Petzsche [9] by proving a generalization of the Borel and Mityagin theorems for -spaces. We get a Ritt type improvement, i.e. from 0 to sectors of the Riemann surface of the function log for spaces of ultraholomorphic functions, by first establishing a generalization to some nonclassical ultradifferentiable function spaces.
Consider the following conditions. (a) Every regular LB-space is complete; (b) if an operator T between complete LB-spaces maps bounded sets into relatively compact sets, then T factorizes through a Montel LB-space; (c) for every complete LB-space E the space C (βℕ, E) is bornological. We show that (a) ⇒ (b) ⇒ (c). Moreover, we show that if E is Montel, then (c) holds. An example of an LB-space E with a strictly increasing transfinite sequence of its Mackey derivatives is given.
Starting with a continuous injection I: X → Y between Banach spaces, we are interested in the Fréchet (non Banach) space obtained as the reduced projective limit of the real interpolation spaces. We study relationships among the pertenence of I to an operator ideal and the pertenence of the given interpolation space to the Grothendieck class generated by that ideal.
In this paper we define, by duality methods, a space of ultradistributions . This space contains all tempered distributions and is closed under derivatives, complex translations and Fourier transform. Moreover, it contains some multipole series and all entire functions of order less than two. The method used to construct led us to a detailed study, presented at the beginning of the paper, of the duals of infinite dimensional locally convex spaces that are inductive limits of finite dimensional...
The equicontinuous sets of locally convex generalized inducted limit (or mixed) topologies are characterized as generalized precompact sets. Uniformly pre-Lebesgue and Lebesgue topologies in normed Riesz spaces are investigated and it is shown that order precompactness and mixed topologies can be used to great advantage in the study of these topologies.