On some Optimization Problems in Not Necessarily Locally Convex Space
Let X be a real or complex vector space. We show that the maximal p-convex topology makes X a complete Hausdorff topological vector space. If X has an uncountable dimension, then different p give different topologies. However, if the dimension of X is at most countable, then all these topologies coincide. This leads to an example of a complete locally pseudoconvex space X that is not locally convex, but all of whose separable subspaces are locally convex. We apply these results to topological algebras,...
The p-envelope of an F-space is the p-convex analogue of the Fréchet envelope. We show that if an F-space is locally bounded (i.e., a quasi-Banach space) with separating dual, then the p-envelope coincides with the Banach envelope only if the space is already locally convex. By contrast, we give examples of F-spaces with are not locally bounded nor locally convex for which the p-envelope and the Fréchet envelope are the same.
Rodrigues’ extension (1989) of the classical Pták’s homomorphism theorem to a non-necessarily locally convex setting stated that a nearly semi-open mapping between a semi-B-complete space and an arbitrary topological vector space is semi-open. In this paper we study this extension and, as a consequence of the results obtained, provide an improvement of Pták’s homomorphism theorem.
We survey some questions on Rademacher series in both Banach and quasi-Banach spaces which have been the subject of extensive research from the time of Orlicz to the present day.
In this note, we investigate non-locally-convex topological vector spaces for which the closed graph theorem holds. In doing so, we introduce new classes of topological vector spaces. Our study includes a direct extension of Pták duality to the non-locally-convex situation.