A bipolar theorem for L
Schauder’s Conjecture (i.eėvery compact convex set in a Hausdorff topological vector space has the f.p.p.) is reduced to the search for fixed points of suitable multivalued maps in finite dimensional spaces.
It is shown that if F is a topological vector space containing a complete, locally pseudo-convex subspace E such that F/E = L₀ then E is complemented in F and so F = E⊕ L₀. This generalizes results by Kalton and Peck and Faber.
It is proved that if are separable quasi-Banach spaces, then contains a dense dual-separating subspace if either or has this property.
A rigid space is a topological vector space whose endomorphisms are all simply scalar multiples of the identity map. The first complete rigid space was published in 1981 in [2]. Clearly a rigid space is a trivial-dual space, and admits no compact endomorphisms. In this paper a modification of the original construction results in a rigid space which is, however, the domain space of a compact operator, answering a question that was first raised soon after the existence of complete rigid spaces was...
The Antosik-Mikusinski Matrix Theorem is used to give an extension of a uniform boundedness principle due to V. Pták to certain metric linear spaces. An application to bilinear operators is given.