The exactness of the projective limit functor on the category of quotients of Frechet spaces
We give conditions under which the functor projective limit is exact on the category of quotients of Fréchet spaces of L. Waelbroeck [18].
We give conditions under which the functor projective limit is exact on the category of quotients of Fréchet spaces of L. Waelbroeck [18].
It is shown that all maximal regular ideals in a Hausdorff topological algebra A are closed if the von Neumann bornology of A has a pseudo-basis which consists of idempotent and completant absolutely pseudoconvex sets. Moreover, all ideals in a unital commutative sequentially Mackey complete Hausdorff topological algebra A with jointly continuous multiplication and bounded elements are closed if the von Neumann bornology of A is idempotently pseudoconvex.
Let be an operator ideal on LCS’s. A continuous seminorm p of a LCS X is said to be - continuous if , where is the completion of the normed space and is the canonical map. p is said to be a Groth()- seminorm if there is a continuous seminorm q of X such that p ≤ q and the canonical map belongs to . It is well known that when is the ideal of absolutely summing (resp. precompact, weakly compact) operators, a LCS X is a nuclear (resp. Schwartz, infra-Schwartz) space if and only if every continuous...