On a class of reflexive spaces related to Ulam's conjecture on measurable cardinals.
The search session has expired. Please query the service again.
Page 1
P.K. Raman (1970)
Journal für die reine und angewandte Mathematik
Karel Horák, Vladimír Müller (1993)
Czechoslovak Mathematical Journal
Manuel Valdivia (1972)
Manuscripta mathematica
Iryna Banakh, Taras O. Banakh, Elena Riss (2009)
Commentationes Mathematicae Universitatis Carolinae
A Banach space is called -reflexive if for any cover of by weakly open sets there is a finite subfamily covering some ball of radius 1 centered at a point with . We prove that an infinite-dimensional separable Banach space is -reflexive (-reflexive for some ) if and only if each -net for has an accumulation point (resp., contains a non-trivial convergent sequence) in the weak topology of . We show that the quasireflexive James space is -reflexive for no . We do not know...
Haskell Rosenthal (1970)
Studia Mathematica
L. Drewnowski (1987)
Colloquium Mathematicae
Le Van Hot (1980)
Commentationes Mathematicae Universitatis Carolinae
W. Roelcke, S. Dierolf (1981)
Collectanea Mathematica
Mazaheri, H., Nezhad, A.Dehghan (2001)
Southwest Journal of Pure and Applied Mathematics [electronic only]
Page 1