The Lorentz Sequence Spaces d(w, p) Where w is Increasing.
Let Ω be an open connected subset of . We show that the space A(Ω) of real-analytic functions on Ω has no (Schauder) basis. One of the crucial steps is to show that all metrizable complemented subspaces of A(Ω) are finite-dimensional.
We give some new properties of the space and we apply them to the σ-core theory. These results generalize those by Choudhary and Yardimci.
The linear isomorphism type of the tensor algebra T(E) of Fréchet spaces and, in particular, of power series spaces is studied. While for nuclear power series spaces of infinite type it is always s, the situation for finite type power series spaces is more complicated. The linear isomorphism T(s) ≅ s can be used to define a multiplication on s which makes it a Fréchet m-algebra . This may be used to give an algebra analogue to the structure theory of s, that is, characterize Fréchet m-algebras...