Imbedding of Power Series Spaces and Spaces of Analytic Functions.
Let L be a normal Banach sequence space such that every element in L is the limit of its sections and let E = ind En be a separated inductive limit of the locally convex spaces. Then ind L(En) is a topological subspace of L(E).
Let ℓ be a Banach sequence space with a monotone norm , in which the canonical system is a normalized symmetric basis. We give a complete isomorphic classification of Cartesian products where and are finite and infinite ℓ-power series spaces, respectively. This classification is the generalization of the results by Chalov et al. [Studia Math. 137 (1999)] and Djakov et al. [Michigan Math. J. 43 (1996)] by using the method of compound linear topological invariants developed by the third author....
Let Λ_R(α) be a nuclear power series space of finite or infinite type with lim_{j→∞} (1/j) log α_j = 0. We consider open polydiscs D_a in Λ_R(α)'_b with finite radii and the spaces H(D_a) of all holomorphic functions on D_a under the compact-open topology. We characterize all isomorphy classes of the spaces {H(D_a) | a ∈ Λ_R(α), a > 0}. In the case of a nuclear power series space Λ₁(α) of finite type we give this characterization in terms of the invariants (Ω̅ ) and (Ω̃ ) known from the theory...