(I)-envelopes of unit balls and James' characterization of reflexivity
We study the (I)-envelopes of the unit balls of Banach spaces. We show, in particular, that any nonreflexive space can be renormed in such a way that the (I)-envelope of the unit ball is not the whole bidual unit ball. Further, we give a simpler proof of James' characterization of reflexivity in the nonseparable case. We also study the spaces in which the (I)-envelope of the unit ball adds nothing.