Calculating norms in the spaces and .
We show that the cardinality of a compact convex set W in a topological linear space X satisfies the condition that . We also establish some relations between the cardinality of W and that of extrW provided X is locally convex. Moreover, we deal with the cardinality of the convex set E(μ) of all quasi-measure extensions of a quasi-measure μ, defined on an algebra of sets, to a larger algebra of sets, and relate it to the cardinality of extrE(μ).
We construct a Choquet simplex whose set of extreme points is -analytic, but is not a -Borel set. The set has the surprising property of being a set in its Stone-Cech compactification. It is hence an example of a set that is not absolute.
Let be a locally compact group. Let be the left translation in , given by . We characterize (undre a mild set-theoretical hypothesis) the functions such that the map from into is scalarly measurable (i.e. for , is measurable). We show that it is the case when is measurable for each character , and if is compact, if and only if is Riemann-measurable. We show that is Borel measurable if and only if is left uniformly continuous.Some of the measure-theoretic tools used there...
Let E be a locally convex topological Hausdorff space, K a nonempty compact convex subset of E, μ a regular Borel probability measure on E and γ > 0. We say that the measure μ γ-represents a point x ∈ K if for any f ∈ E*. In this paper a continuous version of the Choquet theorem is proved, namely, if P is a continuous multivalued mapping from a metric space T into the space of nonempty, bounded convex subsets of a Banach space X, then there exists a weak* continuous family of regular Borel...