Partially bounded sets of infinite width.
Three sets occurring in functional analysis are shown to be of class PCA (also called ) and to be exactly of that class. The definition of each set is close to the usual objects of modern analysis, but some subtlety causes the sets to have a greater complexity than expected. Recent work in a similar direction is in [1, 2, 10, 11, 12].
Poletsky has introduced a notion of plurisubharmonicity for functions defined on compact sets in ℂⁿ. We show that these functions can be completely characterized in terms of monotone convergence of plurisubharmonic functions defined on neighborhoods of the compact.
A characterization of the structure of positive maps is presented. This sheds some more light on the old open problem studied both in Quantum Information and Operator Algebras. Our arguments are based on the concept of exposed points, links between tensor products and mapping spaces and convex analysis.
We introduce a notion of a product and projective limit of function spaces. We show that the Choquet boundary of the product space is the product of Choquet boundaries. Next we show that the product of simplicial spaces is simplicial. We also show that the maximal measures on the product space are exactly those with maximal projections. We show similar characterizations of the Choquet boundary and the space of maximal measures for the projective limit of function spaces under some additional assumptions...