Linear isometries of finite codimensions on Banach algebras of holomorphic functions.
Let X,Y be Banach spaces, f: X → Y be an isometry with f(0) = 0, and be the Figiel operator with and ||T|| = 1. We present a sufficient and necessary condition for the Figiel operator T to admit a linear isometric right inverse. We also prove that such a right inverse exists when is weakly nearly strictly convex.
We consider the problem of isometric embedding of metric spaces into Banach spaces, and introduce and study the remarkable class of so-called linearly rigid metric spaces: these are the spaces that admit a unique, up to isometry, linearly dense isometric embedding into a Banach space. The first nontrivial example of such a space was given by R. Holmes; he proved that the universal Urysohn space has this property. We give a criterion of linear rigidity of a metric space, which allows us to give a...
We study the local dual spaces of a Banach space X, which can be described as the subspaces of X* that have the properties that the principle of local reflexivity attributes to X as a subspace of X**. We give several characterizations of local dual spaces, which allow us to show many examples. Moreover, every separable space X has a separable local dual Z, and we can choose Z with the metric approximation property if X has it. We also show that a separable space containing no...