C*-algebras have a quantitative version of Pełczyński's property (V)
A Banach space has Pełczyński’s property (V) if for every Banach space every unconditionally converging operator is weakly compact. H. Pfitzner proved that -algebras have Pełczyński’s property (V). In the preprint (Krulišová, (2015)) the author explores possible quantifications of the property (V) and shows that spaces for a compact Hausdorff space enjoy a quantitative version of the property (V). In this paper we generalize this result by quantifying Pfitzner’s theorem. Moreover, we...