A Bator's question on dual Banach spaces.
Page 1 Next
MANUEL LÓPEZ PELLICER (1999)
Revista de la Real Academia de Ciencias Exactas Físicas y Naturales
Rudolf Brigola (1983)
Manuscripta mathematica
Libor Vesely (1993)
Extracta Mathematicae
Tran Nguyen (1979)
Studia Mathematica
A. W. Wickstead (1976)
Annales de l'institut Fourier
The equivalence of the two following properties is proved for every Banach lattice :1) is weakly sequentially complete.2) Every -Borel measurable linear functional on is -continuous.
Manuel Valdivia (1975)
Journal für die reine und angewandte Mathematik
James Halger (1977)
Studia Mathematica
Roman Pol (1979)
Studia Mathematica
Joe Howard (1972)
Commentationes Mathematicae Universitatis Carolinae
J. Bell, David Fremlin (1972)
Fundamenta Mathematicae
Richard M. Aron, Paul D. Berner (1978)
Bulletin de la Société Mathématique de France
Bernd Müller (1977)
Mathematische Zeitschrift
Marianne Morillon (2005)
Extracta Mathematicae
We provide a new proof of James' sup theorem for (non necessarily separable) Banach spaces. One of the ingredients is the following generalization of a theorem of Hagler and Johnson: "If a normed space E does not contain any asymptotically isometric copy of l1, then every bounded sequence of E' has a normalized l1-block sequence pointwise converging to 0".
Josef Kolomý (1992)
Acta Universitatis Carolinae. Mathematica et Physica
Denny H. Leung (1996)
Commentationes Mathematicae Universitatis Carolinae
It is shown that there exists a Banach space with an unconditional basis which is not -saturated, but whose dual is -saturated.
Das, Mrinal Kanti (1990)
International Journal of Mathematics and Mathematical Sciences
Sten Kaijser (1977)
Mathematica Scandinavica
Kamil John, Václav Zizler (1976)
Commentationes Mathematicae Universitatis Carolinae
J. A. Johnson (1979)
Colloquium Mathematicae
Gudrun Schappacher (2005)
Applications of Mathematics
The notion of the Orlicz space is generalized to spaces of Banach-space valued functions. A well-known generalization is based on -functions of a real variable. We consider a more general setting based on spaces generated by convex functions defined on a Banach space. We investigate structural properties of these spaces, such as the role of the delta-growth conditions, separability, the closure of , and representations of the dual space.
Page 1 Next