Modèles étalés des espaces de Banach
We introduce the notion of the modulus of dentability defined for any point of the unit sphere S(X) of a Banach space X. We calculate effectively this modulus for denting points of the unit ball of the classical interpolation space Moreover, a criterion for denting points of the unit ball in this space is given. We also show that none of denting points of the unit ball of is a LUR-point. Consequently, the set of LUR-points of the unit ball of is empty.
The criteria for uniform monotonicity, locally uniformly monotonicity and monotonicity of of Orlicz spaces with Luxemburg and Orlicz norms are given. The monotone coefficients of a point and of the spaces are computed.
A classification of weakly compact multiplication operators on 1<p<ppLpTLp1<p<2pT|XXLpXLrr<2XIt is also shown that if is convolution by a biased coin on of the Cantor group, , and is an isomorphism for some reflexive subspace of , then is isomorphic to a Hilbert space. The case answers a question asked by Rosenthal in 1976.
Let X be a Banach space. We introduce a formal approach which seems to be useful in the study of those properties of operators on X which depend only on the norms of the images of elements. This approach is applied to the Daugavet equation for norms of operators; in particular we develop a general theory of narrow operators and rich subspaces of spaces X with the Daugavet property previously studied in the context of the classical spaces C(K) and L₁(μ).
The aim of this paper is to discuss the concept of near smoothness in some Banach sequence spaces.
Nearly smooth points and near smoothness in Orlicz spaces are characterized. It is worth to notice that in the nonatomic case smooth points and nearly smooth points are the same, but in the sequence case they differ.
Two properties on projective tensor products are introduced and briefly studied. We apply them to give sufficient conditions to assure the non-containment of l1 in a projective tensor product of Banach spaces.
It is shown that if (S,∑,m) is an atomless finite measure space and X is a Banach space without the Radon-Nikodym property, then the quotient space cabv(∑,m;X)/L¹(m;X) is nonseparable.