Near smoothness of Banach spaces.
The aim of this paper is to discuss the concept of near smoothness in some Banach sequence spaces.
The aim of this paper is to discuss the concept of near smoothness in some Banach sequence spaces.
Let be the class of Banach spaces X for which every weakly quasi-continuous mapping f: A → X defined on an α-favorable space A is norm continuous at the points of a dense subset of A. We will show that this class is stable under c₀-sums and -sums of Banach spaces for 1 ≤ p < ∞.
The notion of a measure of noncompactness turns out to be a very important and useful tool in many branches of mathematical analysis. The current state of this theory and its applications are presented in the books [1,4,11] for example.The notion of a measure of weak noncompactness was introduced by De Blasi [8] and was subsequently used in numerous branches of functional analysis and the theory of differential and integral equations (cf. [2,3,9,10,11], for instance).In this note we summarize our...