Displaying 101 – 120 of 152

Showing per page

Sets invariant under projections onto two dimensional subspaces

Simon Fitzpatrick, Bruce Calvert (1991)

Commentationes Mathematicae Universitatis Carolinae

The Blaschke–Kakutani result characterizes inner product spaces E , among normed spaces of dimension at least 3, by the property that for every 2 dimensional subspace F there is a norm 1 linear projection onto F . In this paper, we determine which closed neighborhoods B of zero in a real locally convex space E of dimension at least 3 have the property that for every 2 dimensional subspace F there is a continuous linear projection P onto F with P ( B ) B .

Some geometric properties of typical compact convex sets in Hilbert spaces

F. de Blasi (1999)

Studia Mathematica

An investigation is carried out of the compact convex sets X in an infinite-dimensional separable Hilbert space , for which the metric antiprojection q X ( e ) from e to X has fixed cardinality n+1 ( n arbitrary) for every e in a dense subset of . A similar study is performed in the case of the metric projection p X ( e ) from e to X where X is a compact subset of .

Spectra of the difference, sum and product of idempotents

Mohamed Barraa, Mohamed Boumazgour (2001)

Studia Mathematica

We give a simple proof of the relation between the spectra of the difference and product of any two idempotents in a Banach algebra. We also give the relation between the spectra of their sum and product.

Subsequences of frames

R. Vershynin (2001)

Studia Mathematica

Every frame in Hilbert space contains a subsequence equivalent to an orthogonal basis. If a frame is n-dimensional then this subsequence has length (1 - ε)n. On the other hand, there is a frame which does not contain bases with brackets.

Subspaces with a common complement in a Banach space

Dimosthenis Drivaliaris, Nikos Yannakakis (2007)

Studia Mathematica

We study the problem of the existence of a common algebraic complement for a pair of closed subspaces of a Banach space. We prove the following two characterizations: (1) The pairs of subspaces of a Banach space with a common complement coincide with those pairs which are isomorphic to a pair of graphs of bounded linear operators between two other Banach spaces. (2) The pairs of subspaces of a Banach space X with a common complement coincide with those pairs for which there exists an involution...

Sufficient conditions for the spectrality of self-affine measures with prime determinant

Jian-Lin Li (2014)

Studia Mathematica

Let μ M , D be a self-affine measure associated with an expanding matrix M and a finite digit set D. We study the spectrality of μ M , D when |det(M)| = |D| = p is a prime. We obtain several new sufficient conditions on M and D for μ M , D to be a spectral measure with lattice spectrum. As an application, we present some properties of the digit sets of integral self-affine tiles, which are connected with a conjecture of Lagarias and Wang.

The First Mean Value Theorem for Integrals

Keiko Narita, Noboru Endou, Yasunari Shidama (2008)

Formalized Mathematics

In this article, we prove the first mean value theorem for integrals [16]. The formalization of various theorems about the properties of the Lebesgue integral is also presented.MML identifier: MESFUNC7, version: 7.8.09 4.97.1001

Currently displaying 101 – 120 of 152