Displaying 41 – 60 of 79

Showing per page

On the angles between certain arithmetically defined subspaces of 𝐂 n

Robert Brooks (1987)

Annales de l'institut Fourier

If { v i } and { w j } are two families of unitary bases for C n , and θ is a fixed number, let V n and W n be subspaces of C n spanned by [ θ · n ] vectors in { v i } and { w j } respectively. We study the angle between V n and W n as n goes to infinity. We show that when { v i } and { w j } arise in certain arithmetically defined families, the angles between V n and W n may either tend to 0 or be bounded away from zero, depending on the behavior of an associated eigenvalue problem.

On the dependence of the orthogonal projector on deformations of the scalar product

Zbigniew Pasternak-Winiarski (1998)

Studia Mathematica

We consider scalar products on a given Hilbert space parametrized by bounded positive and invertible operators defined on this space, and orthogonal projectors onto a fixed closed subspace of the initial Hilbert space corresponding to these scalar products. We show that the projector is an analytic function of the scalar product, we give the explicit formula for its Taylor expansion, and we prove some algebraic formulas for projectors.

Currently displaying 41 – 60 of 79