Cartan-Thullen theorem for domains spread over ...-spaces.
Extending previous work by Meise and Vogt, we characterize those convolution operators, defined on the space of (ω)-quasianalytic functions of Beurling type of one variable, which admit a continuous linear right inverse. Also, we characterize those (ω)-ultradifferential operators which admit a continuous linear right inverse on for each compact interval [a,b] and we show that this property is in fact weaker than the existence of a continuous linear right inverse on .
This paper is an extended version of an invited talk presented during the Orlicz Centenary Conference (Poznań, 2003). It contains a brief survey of applications to classical problems of analysis of the theory of the so-called PLS-spaces (in particular, spaces of distributions and real analytic functions). Sequential representations of the spaces and the theory of the functor Proj¹ are applied to questions like solvability of linear partial differential equations, existence of a solution depending...
We characterize compact composition operators acting on weighted Bergman-Orlicz spaces , where α > -1 and ψ is a strictly increasing, subadditive convex function defined on [0,∞) and satisfying ψ(0) = 0, the growth condition and the Δ₂-condition. In fact, we prove that is compact on if and only if it is compact on the weighted Bergman space .
We look at normed spaces of differentiable functions on compact plane sets, including the spaces of infinitely differentiable functions considered by Dales and Davie in [7]. For many compact plane sets the classical definitions give rise to incomplete spaces. We introduce an alternative definition of differentiability which allows us to describe the completions of these spaces. We also consider some associated problems of polynomial and rational approximation.
We characterize stability under composition of ultradifferentiable classes defined by weight sequences M, by weight functions ω, and, more generally, by weight matrices , and investigate continuity of composition (g,f) ↦ f ∘ g. In addition, we represent the Beurling space and the Roumieu space as intersection and union of spaces and for associated weight sequences, respectively.
We characterize the boundedness and compactness of composition operators from weighted Bergman-Privalov spaces to Zygmund type spaces on the unit disk.
We show that the restriction operator of the space of holomorphic functions on a complex Lie group to an analytic subset V has a continuous linear right inverse if it is surjective and if V is a finite branched cover over a connected closed subgroup Γ of G. Moreover, we show that if Γ and G are complex Lie groups and V ⊂ Γ × G is an analytic set such that the canonical projection is finite and proper, then has a right inverse