Page 1

Displaying 1 – 11 of 11

Showing per page

Barrelledness of generalized sums of normed spaces

Ariel Fernández, Miguel Florencio, J. Oliveros (2000)

Czechoslovak Mathematical Journal

Let ( E i ) i I be a family of normed spaces and λ a space of scalar generalized sequences. The λ -sum of the family ( E i ) i I of spaces is λ { ( E i ) i I } : = { ( x i ) i I , x i E i , and ( x i ) i I λ } . Starting from the topology on λ and the norm topology on each E i , a natural topology on λ { ( E i ) i I } can be defined. We give conditions for λ { ( E i ) i I } to be quasi-barrelled, barrelled or locally complete.

Bases de Schauder dans certains espaces de fonctions holomorphes

Nguyen Thanh Van (1972)

Annales de l'institut Fourier

On étudie les bases de Schauder pour fonctions holomorphes et leurs applications à l’approximation et interpolation.Après avoir établi quelques faits généraux sur les bases et semi-bases, on les applique à l’étude des bases formées par une suite simple de polynômes.L’effort principal est porté sur la preuve de l’existence d’une “bonne” base commune des espaces des fonctions holomorphes sur Ω et χ , où Ω est un domaine de C et χ un compact dans Ω tels que Ω χ soit un domaine régulier pour le problème...

Bases in spaces of analytic germs

Michael Langenbruch (2012)

Annales Polonici Mathematici

We prove precise decomposition results and logarithmically convex estimates in certain weighted spaces of holomorphic germs near ℝ. These imply that the spaces have a basis and are tamely isomorphic to the dual of a power series space of finite type which can be calculated in many situations. Our results apply to the Gelfand-Shilov spaces S ¹ α and S α for α > 0 and to the spaces of Fourier hyperfunctions and of modified Fourier hyperfunctions.

Biduality in (LF)-spaces.

Klaus D. Bierstedt, José Bonet (2001)

RACSAM

En la Sección 1 se pueban resultados abstractos sobre preduales y sobre bidualidad de espacios (LF). Sea E = indn En un espacio (LF), ponemos H = indn Hn para una sucesión de subespacios de Fréchet Hn de En con Hn ⊂ Hn+1. Investigamos bajo qué condiciones el espacio E es canónicamente (topológicamente isomorfo a) el bidual inductivo (H'b)'i o (incluso) al bidual fuerte de H. Los resultados abstractos se aplican en la Sección 2, especialmente a espacios (LF) ponderados de funciones holomorfas, pero...

Currently displaying 1 – 11 of 11

Page 1