Imbedding of Power Series Spaces and Spaces of Analytic Functions.
Page 1
A. Aytuna, J. Krone, T. Terzioglu (1990)
Manuscripta mathematica
Ralf Hollstein (1980)
Journal für die reine und angewandte Mathematik
Klaus-Dieter Bierstedt, R. Meise (1976)
Journal für die reine und angewandte Mathematik
Klaus-Dieter Bierstedt (1974)
Journal für die reine und angewandte Mathematik
Verónica Dimant, Pablo Galindo, Manuel Maestre, Ignacio Zalduendo (2004)
Studia Mathematica
We define the class of integral holomorphic functions over Banach spaces; these are functions admitting an integral representation akin to the Cauchy integral formula, and are related to integral polynomials. After studying various properties of these functions, Banach and Fréchet spaces of integral holomorphic functions are defined, and several aspects investigated: duality, Taylor series approximation, biduality and reflexivity.
Yu. Daleckiĭ (1970)
Studia Mathematica
Bao Qin Li, Enrique Villamor (2006)
Studia Mathematica
A necessary and sufficient condition is obtained for a discrete multiplicity variety to be an interpolating variety for the space .
Jean-Paul Bezivin (1973/1974)
Groupe de travail d'analyse ultramétrique
Patrice Lassere (1991)
Annales Polonici Mathematici
Let be a compact subset of an hyperconvex open set , forming with D a Runge pair and such that the extremal p.s.h. function ω(·,K,D) is continuous. Let H(D) and H(K) be the spaces of holomorphic functions respectively on D and K equipped with their usual topologies. The main result of this paper contains as a particular case the following statement: if T is a continuous linear map of H(K) into H(K) whose restriction to H(D) is continuous into H(D), then the restriction of T to is a continuous...
Yasuo Iida, Kei Takahashi (2013)
Open Mathematics
Linear isometries of N p(D) onto N p(D) are described, where N p(D), p > 1, is the set of all holomorphic functions f on the upper half plane D = {z ∈ ℂ: Im z > 0} such that supy>0 ∫ℝ lnp (1 + |(x + iy)|) dx < +∞. Our result is an improvement of the results by D.A. Efimov.
Alain Etcheberry (1975)
Studia Mathematica
Page 1