Lipschitz classes and Poisson integrals on stratified groups
Let C(K) denote the Banach algebra of continuous real functions, with the supremum norm, on a compact Hausdorff space K. For two subsets of C(K), one can define their product by pointwise multiplication, just as the Minkowski sum of the sets is defined by pointwise addition. Our main interest is in correlations between properties of the product of closed order intervals in C(K) and properties of the underlying space K. When K is finite, the product of two intervals in C(K) is always an interval....
The authors obtain some multiplier theorems on spaces analogous to the classical multiplier theorems of de Leeuw. The main result is that a multiplier operator
The Nevanlinna algebras, , of this paper are the variants of classical weighted area Nevanlinna classes of analytic functions on = z ∈ ℂ: |z| < 1. They are F-algebras, neither locally bounded nor locally convex, with a rich duality structure. For s = (α+2)/p, the algebra of analytic functions f: → ℂ such that as |z| → 1 is the Fréchet envelope of . The corresponding algebra of analytic f: → ℂ such that is a complete metric space but fails to be a topological vector space. is also...
Let ψ and φ be analytic functions on the open unit disk with φ() ⊆ . We give new characterizations of the bounded and compact weighted composition operators W ψ,ϕ from the Hardy spaces H p, 1 ≤ p ≤ ∞, the Bloch space B, the weighted Bergman spaces A αp, α > − 1,1 ≤ p < ∞, and the Dirichlet space to the Bloch space in terms of boundedness (respectively, convergence to 0) of the Bloch norms of W ψ,ϕ f for suitable collections of functions f in the respective spaces. We also obtain characterizations...
We abstractly characterize Lipschitz spaces in terms of having a lattice-complete unit ball and a separating family of pure normal states. We then formulate a notion of "measurable metric space" and characterize the corresponding Lipschitz spaces in terms of having a lattice complete unit ball and a separating family of normal states.