Page 1

Displaying 1 – 4 of 4

Showing per page

Linear topological properties of the Lumer-Smirnov class of the polydisc

Marek Nawrocki (1992)

Studia Mathematica

Linear topological properties of the Lumer-Smirnov class L N ( n ) of the unit polydisc n are studied. The topological dual and the Fréchet envelope are described. It is proved that L N ( n ) has a weak basis but it is nonseparable in its original topology. Moreover, it is shown that the Orlicz-Pettis theorem fails for L N ( n ) .

Locally constant functions

Joan Hart, Kenneth Kunen (1996)

Fundamenta Mathematicae

Let X be a compact Hausdorff space and M a metric space. E 0 ( X , M ) is the set of f ∈ C(X,M) such that there is a dense set of points x ∈ X with f constant on some neighborhood of x. We describe some general classes of X for which E 0 ( X , M ) is all of C(X,M). These include βℕ, any nowhere separable LOTS, and any X such that forcing with the open subsets of X does not add reals. In the case where M is a Banach space, we discuss the properties of E 0 ( X , M ) as a normed linear space. We also build three first countable Eberlein...

Currently displaying 1 – 4 of 4

Page 1