Über die Existenz von Schauderbasen in Sobolev-Besov-Räumen. Isomorphiebeziehungen
On présente une formule explicite pour la constante de Sobolev logarithmique correspondant à des diffusions réelles ou à des processus entiers de vie et de mort, sous l’hypothèse que certaines quantités, naturellement associées à des inégalités de Hardy dans ce contexte, approchent leur supremum au bord de leur domaine de définition. La preuve se ramène au cas de la constante de Poincaré, à l’aide de comparaisons exactes entre entropie et variances appropriées.
We study smoothness spaces generated by maximal functions related to the local approximation errors of integral operators. It turns out that in certain cases these smoothness classes coincide with the spaces , 0 < p≤∞, introduced by DeVore and Sharpley [DS] by means of the so-called sharp maximal functions of Calderón and Scott. As an application we characterize the spaces in terms of the coefficients of wavelet decompositions.
We study different definitions of the first order variable exponent Sobolev space with zero boundary values in an open subset of .
The trace space of consists of those functions on ℝⁿ that can be extended to functions of (as in the fixed-exponent case). Under the assumption that p is globally log-Hölder continuous, we show that the trace space depends only on the values of p on the boundary. In our main result we show how to define an intrinsic norm for the trace space in terms of a sharp-type operator.
In a recent article the authors showed that it is possible to define a Sobolev capacity in variable exponent Sobolev space. However, this set function was shown to be a Choquet capacity only under certain assumptions on the variable exponent. In this article we relax these assumptions.