Eberlein compacts in
In the spirit of the classical Banach-Stone theorem, we prove that if K and S are intervals of ordinals and X is a Banach space having non-trivial cotype, then the existence of an isomorphism T from C(K, X) onto C(S,X) with distortion strictly less than 3 implies that some finite topological sum of K is homeomorphic to some finite topological sum of S. Moreover, if Xⁿ contains no subspace isomorphic to for every n ∈ ℕ, then K is homeomorphic to S. In other words, we obtain a vector-valued Banach-Stone...
This paper is concerned with double families of evolution operators employed in the study of dynamical systems in which cause and effect are represented in different Banach spaces. The main tool is the Laplace transform of vector-valued functions. It is used to define the generator of the double family which is a pair of unbounded linear operators and relates to implicit evolution equations in a direct manner. The characterization of generators for a special class of evolutions is presented.
We obtain the equivalence of the properties and (NUC) in Orlicz function spaces. This answers a question raised by Y. Cui, R. Pluciennik and T. Wang.
Given a subset A of a topological space X, a locally convex space Y, and a family ℂ of subsets of Y we study the problem of the existence of a linear ℂ-extender , which is a linear operator extending bounded continuous functions f: A → C ⊂ Y, C ∈ ℂ, to bounded continuous functions f̅ = u(f): X → C ⊂ Y. Two necessary conditions for the existence of such an extender are found in terms of a topological game, which is a modification of the classical strong Choquet game. The results obtained allow us...
We present a unified approach to the study of extensions of vector-valued holomorphic or harmonic functions based on the existence of weak or weak*-holomorphic or harmonic extensions. Several recent results due to Arendt, Nikolski, Bierstedt, Holtmanns and Grosse-Erdmann are extended. An open problem by Grosse-Erdmann is solved in the negative. Using the extension results we prove existence of Wolff type representations for the duals of certain function spaces.
We present two types of representation theorems: one for linear continuous operators on space of Banach valued regulated functions of several real variables and the other for bilinear continuous operators on cartesian products of spaces of regulated functions of a real variable taking values on Banach spaces. We use generalizations of the notions of functions of bounded variation in the sense of Vitali and Fréchet and the Riemann-Stieltjes-Dushnik or interior integral. A few applications using geometry...